![]() |
新聞中心
當(dāng)前位置:網(wǎng)站首頁 > 新聞中心
邊緣計算、云計算、霧計算能為自動駕駛做些什么?
邊緣計算、霧計算和云計算將在自動駕駛領(lǐng)域發(fā)揮什么樣的作用?哪些任務(wù)交給邊緣計算,哪些交給云端?在之前的文章中,曾多次提到過5G網(wǎng)聯(lián)技術(shù)將給自動駕駛帶來的巨大變化。5G網(wǎng)絡(luò)能提供20Gbps速率,時延僅僅1毫秒,每平方公里100萬連接,網(wǎng)絡(luò)穩(wěn)定性可達(dá)99.999%的下一代蜂窩無線通訊網(wǎng)絡(luò),將從單車的信息流共享、車隊的編隊無人化、遠(yuǎn)程駕駛?cè)齻€方面推動智能駕駛的高速發(fā)展。5G網(wǎng)絡(luò)的給智能駕駛帶來了低延時,高穩(wěn)定性的物網(wǎng)聯(lián)架構(gòu)。通過服務(wù)器的高性能計算,核心云及邊緣云給網(wǎng)聯(lián)駕駛車提供實時路況、道路信息、行人信息等一系列交通信息,讓智能駕駛邁進(jìn)了“入5G網(wǎng)而知天下”的時代。
然而,有一部分朋友并不完全認(rèn)同,@goly說:“設(shè)備端轉(zhuǎn)云端處理根本就不現(xiàn)實! 1.網(wǎng)絡(luò)覆蓋情況? 2.高速120下網(wǎng)絡(luò)吃的消?過隧道之類的咋處理?3.實時性要求? 云端處理海量數(shù)據(jù),集群,網(wǎng)不好的情況,等數(shù)據(jù)從云到端的時候,都翻車了?!?
還有一個朋友@Mr.high也提出了自己的觀點:“云端+邊緣計算可能是一個解決方案。 增強(qiáng)車載端高性能處理單元(車載計算機(jī)?)的處理能力, 網(wǎng)絡(luò)負(fù)載能力與高速行駛狀態(tài)下的容錯能力。 現(xiàn)在的車載TBOX已經(jīng)完全不能滿足需要,5G時代的來臨可能會觸發(fā)車載高性能計算機(jī)的爆發(fā)式增長,CPU,GPU們好戲又要來了,反觀桌面PC市場可能進(jìn)一步萎縮,更智能的手機(jī)終端與車載高性能計算機(jī)的搭配可能漸入佳境?!?
邊緣計算、霧計算和云計算將在自動駕駛領(lǐng)域發(fā)揮什么樣的作用?邊緣計算是一個相對較新的術(shù)語,隨著物聯(lián)網(wǎng)(IoT)時代的開始,它已變得越來越重要。
邊緣計算是指在靠近物或數(shù)據(jù)源頭的一側(cè),采用網(wǎng)絡(luò)、計算、存儲、應(yīng)用核心能力為一體的開放平臺,就近提供最近端服務(wù),這個概念不像在云端中進(jìn)行處理和算法決策,而是將智能和計算推向更接近實際的行動。這就允許分析的直接性。
與云端相比,邊緣計算具備這七大優(yōu)勢:
延遲:毫秒級延遲
高吞吐量:本地生成,近場傳輸
數(shù)據(jù)簡化:末端自主分析,減少對上游的依賴。
語境意識:實時獲取用戶及位置信息并用于計算
安全性:免受UE和CPE攻擊
隔離:在丟失連接時仍能繼續(xù)運轉(zhuǎn)
合規(guī)性:有助于用戶隱私條款
試想一下,如果你有一個工廠正在運行各種自動泵和渦輪機(jī)。如果設(shè)備連接到云,并且從這些設(shè)備傳出的所有數(shù)據(jù)都進(jìn)入云端,那么讓云實際控制這些設(shè)備也是很誘人的。當(dāng)需要關(guān)閉泵時,從云端通過網(wǎng)絡(luò)發(fā)出并下至泵的命令會告訴它關(guān)閉。當(dāng)泵遇到麻煩時,它會通過網(wǎng)絡(luò)發(fā)送信息并傳送到云端。這將是管理設(shè)備的集中方式。
假設(shè)泵開始出現(xiàn)問題,它需要一點時間才能通過網(wǎng)絡(luò)進(jìn)行通信,然后讓網(wǎng)絡(luò)將消息傳遞到云,然后云應(yīng)用程序需要時間處理信息,才能發(fā)出一條命令,然后通過網(wǎng)絡(luò),最后到達(dá)泵。那可能是因為那時泵已經(jīng)完全失靈了。從泵 云 泵的步驟延遲可能需要很長的時間,以至于云錯過了保存泵的機(jī)會。
這也可以用在自動駕駛汽車。自動駕駛汽車上有許多感應(yīng)裝置,包括攝像頭,用于激光雷達(dá)或雷達(dá),聲納裝置等等。許多自動駕駛汽車制造商正在設(shè)想,傳感器的數(shù)據(jù)將流入汽車制造商為自駕車設(shè)置的云端。這使得汽車制造商能夠收集大量的駕駛數(shù)據(jù),并能夠使用機(jī)器學(xué)習(xí)來改善自動駕駛汽車的行為。
問題出在多少處理應(yīng)該發(fā)生在“邊緣”?
在哪種情況下,處理應(yīng)該在自動駕駛汽車及其無數(shù)本地設(shè)備,而不是在云端?
出于實際原因,我們已經(jīng)知道大部分處理必須發(fā)生在邊緣,因為感知數(shù)據(jù)需要分析的速度受到自動駕駛汽車運動影響需要及時指示汽車周圍有什么。一份調(diào)查表明,一輛每天運行8小時的自動駕駛汽車將產(chǎn)生至少40TB的數(shù)據(jù)。這就是通過網(wǎng)絡(luò)來回傳輸?shù)拇罅繑?shù)據(jù)。
假設(shè)有強(qiáng)大的網(wǎng)絡(luò)連接并且在傳輸過程中保持連接,通過網(wǎng)絡(luò)來回發(fā)送數(shù)據(jù)至少需要150-200毫秒。這實際上是一個很長的時間,因為汽車在運轉(zhuǎn),而且需要對汽車的控制作出快速的決定。
因此,自動駕駛汽車需要利用邊緣計算。但是這涉及到具有足夠的本地化計算處理能力和存儲器容量以能夠確保車輛和AI能夠執(zhí)行其所需的任務(wù)。你可能會說,我們應(yīng)該繼續(xù)將大量的處理器和內(nèi)存放在自動駕駛汽車上。當(dāng)然,這是一個不錯的主意,但請記住,這將為自動駕駛汽車增加大量成本,同時這將會增加機(jī)器發(fā)生故障的幾率,也需要耗費更多的電力,增加更多的重量到汽車等等。
本地與云端并不是互斥的命題通過精心設(shè)計,能夠?qū)⒈镜鼗幚砗驮铺幚砘旌显谝黄稹?
例如,自動駕駛汽車可能正在實時處理感知數(shù)據(jù)并據(jù)此采取駕駛行動。同時,它正在將數(shù)據(jù)發(fā)送到云端。云處理數(shù)據(jù)需要尋找更長期的模式,并最終通過分析數(shù)據(jù)向自動駕駛汽車發(fā)送一些更新信息。在這種情況下,我們將工作分為兩部分,一部分是在本地(邊緣)層面進(jìn)行生死攸關(guān)的快速處理,另一部分是在云層面上進(jìn)行更多面向概述的工作,而不是即時性工作。
將數(shù)據(jù)推送到云端并取回結(jié)果的能力將取決于:
*自動駕駛汽車上的通信設(shè)備
*通過網(wǎng)絡(luò)進(jìn)行通信所涉及的延遲
*網(wǎng)絡(luò)的帶寬
*網(wǎng)絡(luò)的可用性
*網(wǎng)絡(luò)的可靠性
*自駕車內(nèi)的通信
變幻莫測的網(wǎng)絡(luò)決定了為什么不能把自動駕駛汽車的實時工作交給云端處理。
自動駕駛汽車上有一些設(shè)備將被視為邊緣專用設(shè)備,這意味著它們完全依賴于本地處理。盡管他們收集的數(shù)據(jù)可能會發(fā)送到云端,但他們并不依賴于從云端返回的任何內(nèi)容。有邊緣共享的設(shè)備能夠與云分工,完全在本地完成一些任務(wù),并以與云共同協(xié)作的方式執(zhí)行其他任務(wù)。
自動駕駛汽車的處理器上的圖像分析儀能夠追蹤其他汽車,摩托車,行人等。然后將其輸入到傳感器融合中,匯集來自激光雷達(dá),雷達(dá)等的感知分析。傳感器融合被輸入到周圍駕駛場景的虛擬世界模型中。所有這些都在邊緣進(jìn)行(在車內(nèi))。
自動駕駛汽車的AI在本地處理器上運行,并分析虛擬世界模型以決定采取何種動作。然后,AI會命令汽車控制裝置加速或剎車來駕駛汽車。
我們假設(shè)這一切都會發(fā)生在邊緣。過程會是這樣的:
1.傳感器數(shù)據(jù)收集在邊緣
2.傳感器融合在邊緣
3.虛擬世界模型更新在邊緣
4.AI決策規(guī)劃在邊緣確定
5.AI在邊緣發(fā)布汽車控制命令
6.自動駕駛在邊緣執(zhí)行汽車控制命令
如果把云端加進(jìn)來,作為一個非實時合作者,這意味著云會被告知正在發(fā)生的事情,但不會進(jìn)行與自駕車有關(guān)的控制:
1.在邊緣傳感器數(shù)據(jù)收集
將數(shù)據(jù)發(fā)送到云端,但不要等待云端
2.傳感器融合在邊緣
將傳感器融合結(jié)果發(fā)送到云端,但不要等待云端
3.虛擬世界模型更新在邊緣
將虛擬世界模型發(fā)送到云端,但不要等待云端
4.人工智能行動計劃在邊緣確定
將AI行動計劃發(fā)送到云端,但不要等待云端
5.AI在邊緣發(fā)布汽車控制命令
將AI發(fā)布的汽車控制命令發(fā)送到云端,但不要等待云端
6.自駕車控制執(zhí)行命令
從云端獲取更新并在可行時更新邊緣
我們將邊緣信息傳輸?shù)皆贫恕_@也可以在上述循環(huán)結(jié)束時完成,而不是嘗試交錯。
如果決定將云端控制放在這些步驟中,可能看起來是這樣:
在邊緣傳感器數(shù)據(jù)收集
將數(shù)據(jù)發(fā)送到云端,等待云端
傳感器融合在云端
虛擬世界模型更新在云端
AI在云中確定的行動計劃
AI通過云發(fā)布汽車控制命令
等到收到云端車輛控制命令
自駕車執(zhí)行汽車控制命令
在這種邊緣云模型中,自動駕駛汽車幾乎是一輛“啞巴”汽車,并沒有通過自己處理很多事情。如前所述,這里所關(guān)心的是通信是否足夠可靠,只有做到一致性且足夠快才能滿足需要做的事情。云本身可能有一些地球上最快的計算機(jī),但最終是網(wǎng)絡(luò)通信可能會破壞這種巨大的處理能力。
使用云的價值之一是能夠利用我們在云中可以擁有的大得多的處理和內(nèi)存容量,而不是我們已經(jīng)加載到自動駕駛汽車上的容量。例如,當(dāng)進(jìn)行圖像分析時,最好在邊緣完成,而在云端進(jìn)行大規(guī)模學(xué)習(xí),其中有成千上萬的自動駕駛駕駛的汽車圖像,它可能比處在邊緣處理器上的一些較小的神經(jīng)網(wǎng)絡(luò)更好地進(jìn)行圖像分析。
因此,精心設(shè)計的自動駕駛汽車能夠在邊緣擁有所需的自主權(quán),并在適當(dāng)?shù)臅r候利用云。例如,當(dāng)汽車停放或未被使用時,我們可能會讓自動駕駛汽車AI在可用的情況下從云端獲取更新信息。還可以通過利用來自云的大規(guī)模神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)來增強(qiáng)局部邊緣的神經(jīng)網(wǎng)絡(luò)。
有些人認(rèn)為我們也需要霧計算
霧計算是邊緣計算和云計算之間的中間地帶。像一種中介計算,來充當(dāng)邊緣和云之間的中介。這可能意味著我們會在公路上安裝計算機(jī)服務(wù)器,這些系統(tǒng)可以更快速,更可靠地與在高速公路上呼嘯而過的自行駕駛汽車進(jìn)行通信,而不會與云本身進(jìn)行通信。因此,您大概會得到類似云的功能,不會像真正的云那樣具有相同類型的延遲和問題。這需要增加大量的基礎(chǔ)設(shè)施,而這些基礎(chǔ)設(shè)施在初始設(shè)置和保持維護(hù)時往往都很昂貴。
在許多霧計算應(yīng)用中,來自端點設(shè)備或者直接附接到簡單的類服務(wù)器計算機(jī)(有時稱為“網(wǎng)關(guān)”)的傳感器數(shù)據(jù)會受到該網(wǎng)關(guān)的作用而觸發(fā)某些動作,或者執(zhí)行某些類型的任務(wù)。 之后,數(shù)據(jù)被傳送到鏈條上更強(qiáng)大的服務(wù)器。這些服務(wù)器通常在云端進(jìn)行更高級的數(shù)據(jù)分析。
前沿邊緣計算設(shè)備的一個最好例子是聯(lián)網(wǎng)自動(或甚至半自動)汽車。得益于大量的傳感器數(shù)據(jù)以及關(guān)鍵的本地處理能力,再加上連接到云端更先進(jìn)數(shù)據(jù)分析工具的需求,自動駕駛汽車成為了前沿邊緣計算的典范。
盡管我們會懷念一切計算都發(fā)生在本地的簡單日子,或者懷念一切任務(wù)都在遠(yuǎn)程數(shù)據(jù)中心完成的純粹的云端世界,但可能今天的高級應(yīng)用,需要更復(fù)雜的混合設(shè)計。打造基于云的基礎(chǔ)設(shè)施和基于云的軟件工具是計算進(jìn)化的關(guān)鍵一環(huán)。顯然,即將發(fā)生的最有趣且令人興奮的進(jìn)展將會把前沿計算推向邊緣側(cè)。
|